

The Big Bang

Cosmological Weather Report

- Today T=3K
- Yesterday was hotter!
- Tomorrow will be colder!

380,000 years

minutes

1-micro second

4-pico seconds

atoms form

nuclei form

neutrons protons form

primordial soup

BANG!

Periodic table - chemist

Periodic table - cosmologist

Metals

The Universe today:

```
73% Hydrogen (10<sup>-5</sup> <sup>2</sup>H-deuterium)
26% Helium (10<sup>-5</sup> <sup>3</sup>He)
1% Metals
```

The Universe 3 minutes AB:

```
76% Hydrogen (10<sup>-5</sup> <sup>2</sup>H-deuterium)
24% Helium (10<sup>-5</sup> <sup>3</sup>He)
10<sup>-8</sup>% Lithium
```

Nucleosynthesis

...the process of assembling nuclei either by nuclear fusion or nuclear fission.

Nuclear Alchemy

nucleus	mass (AMU)	sum (AMU)

1.0073 p 1.0073 p 1.0087 \mathbf{n}

 \mathbf{n}

1.0087

4.0320

 $m_{^4He} < 2m_p + 2m_n$

Difference in mass (Binding Energy) released as energy à la $E = Mc^2$

⁴He 4.0026

Difference in mass released as energy à la $E = Mc^2$

Nuclear Alchemy

Difference in mass released as energy à la $E = Mc^2$

Nucleosynthesis

...the process of assembling nuclei either by nuclear fusion or nuclear fission.

Big Bang nucleosynthesis (BBN): within the first three minutes of the universe and is responsible for most of the deuterium, helium-4, helium-3, and lithium-7. No elements heavier than lithium could be formed.

Stellar nucleosynthesis: creates most of the heavier elements between lithium and iron.

Supernova nucleosynthesis: produces most of the elements heavier than iron.

Cosmic ray spallation: produces some light elements like lithium and boron.

1. $T \gg 10^{10} \,\mathrm{K}$

(Deuterium has a low binding energy)

2. $T \approx 10^9 \, \text{K}$

3. $T \lesssim 10^9 \, \text{K}$

(Helium-4 has a high binding energy)

4. $T \ll 10^9 \,\mathrm{K}$

- neutrons decay or absorbed into helium
- universe consists mostly of protons and helium
- p + helium → (no stable element with A=5)
- helium + helium → (no stable element with A=8)
- temperature too low for nucleosynthesis

The Universe 3 minutes AB:

Big bang (rate of change of the temperature)
Nuclear physics (binding energies, reactions)


```
76% Hydrogen (10<sup>-5</sup> <sup>2</sup>H-deuterium)
24% Helium (10<sup>-5</sup> <sup>3</sup>He)
10<sup>-8</sup>% Lithium
```


Observed 1604
in Ophiuchus
Peak magnitude = –2.25
Distance < 10 kpc

Cosmology 100 Years Ago

- 1) Nature of space and time: absolute
- 2) Origin of the Universe: not an astronomy issue
- 3) Evolution of the Universe: stationary
- 4) Arrangement of the Universe:

5) Composition of the Universe: starz' in the hood

Hubble Deep Field

The Hubble Ultra Deep Field

UNIVERSE OF GALAXIES

3000 here

50 billion over entire sky

$$\frac{\mathbf{v}^2}{R} = \frac{GM_{SUN}}{R^2}$$

measure v & R

 $\longrightarrow M_{SUN}$

$$rac{ ext{v}^2}{R} = rac{GM_{GALAXY}}{R^2}$$

measure v & R

Vera Rubin

The Invisible Universe

observed

Rotation curves

Gravitational Lens in Abell 2218
PF95-14 · ST Scl OPO · April 5, 1995 · W. Couch (UNSW), NASA

HST · WFPC2

Gravitational Lens Galaxy Cluster 0024+1654

Hubble Space Telescope • WFPC2

Most of the universe is dark!

The invisible universe Dark matter (50 times more than visible matter)

If we could "see" dark matter

Most of the universe is dark!

Most of the universe is dark!

It ain't even normal stuff!

Big Bang Nucleosynthesis

Dark matter?

- Modified Newtonian dynamics
- Planets
- Dizarthstalenged stars

brown red white

Black holes

gravitational microlensing

Most of the universe is Cark!

- Modified Newtonian dynamics
- Planets
- Size challenged stars

brown red white

- Black holes
- Fossil remnant of the big bang

A WIMPY IDEA

- Most of the universe is invisible
- Dominated by the rest mass of an elementary particle
 - present in the primordial soup
 - massive
 - neutral
 - weakly interacting
 - slow
 - stable

Direct detection

Make wimps in the laboratory

Primordial soup

KNOWN INGREDIENTS:

```
56% QUARKS
```

16% GLUONS (STRONG FORCE)

9% ELECTRON-LIKE PARTICLES

9% W's AND Z's (WEAK FORCE)

5% NEUTRINOS

2% PHOTONS (ELECTROMAGNETIC FORCE)

2% GRAVITONS (GRAVITATIONAL FORCE)

1% HIGGS BOSONS (???)

SECRET INGREDIENT: DARK MATTER

Atlas Detector at CERN

Desperately seeking SUSY

Lightest superpartner stable!

Dark energy?

Space and time are related.

1905

Space is dynamical (curved, warped, bent).

1915

Empty space has a weight.

Dark energy

1917 Einstein proposed cosmological constant.

1929 Hubble discovered expansion of the Universe.

1934 Einstein called it "my biggest blunder."

1998 Astronomers found evidence for it.

Our Cosmic Destiny

Vacuum pressure

 $E_2 > E_1$

had to pull piston "negative pressure"

Billions Years from Today

SN 1987A in the LMC

Centaurus A

Type la supernova are standard candles

Type la supernova are standard candles

Type la supernova

Cosmological constant (Dark energy)

Mass density of space: 10^{-30} g cm⁻³

$$10^{-30} \, \text{g cm}^{-3}$$

The unbearable lightness of nothing!

Cosmo-illogical constant?

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G T_{\mu\nu}$$

Geometry = Matter

Curvature = Matter

$$\rho = \rho_{\rm C}$$

$$ho >
ho_{ extsf{C}} \qquad
ho <
ho_{ extsf{C}}$$

$$ho <
ho_{
m C}$$

The sound horizon

Sound travel distance known

Looking out in space is looking back in time.

$$\Omega_{TOTAL} = 1$$

$$\Omega_{MATTER} = 0.3$$

$$1 - 0.3 = 0.7$$

The Cosmic Food Chain

Radiation:	0.02%
Heavy elements	0.03%
Neutrinos	0.47%
Visible matter:	0.50%
Dark H & He	3.98%
Dark matter:	25%
Dark energy:	70%

Much ado about nothing (the quantum vacuum)

NOTHING matters!

NOTHING is something!

NOTHING has energy!

NOTHING changes!

Quantum Uncertainty in the quark anti-quark anti particle

Nothing is something!

Energy of the quantum vacuum

Observed:

$$\rho \le 10^{-30} \text{ g cm}^{-3}$$

Quantum field theory:

$$\rho = \infty$$
 g cm⁻³

Quantum gravity:

$$\rho = 10^{+90} \text{ g cm}^{-3}$$

Supersymmetry:

$$\rho \le 10^{+30} \text{ g cm}^{-3}$$

The Higgs potential

- The quantum vacuum has a Higgs potential
- Higgs field potential gives mass to quanta like quarks and electrons.

Prof. Peter Higgs

 $\rho = \infty$

 $\rho = 10^{+90}$

 $\rho \le 10^{+30}$

 $\rho \sim -10^{+25} \text{ g cm}^{-3}$

 $\rho \sim \pm 10^{+20} \text{ g cm}^{-3}$

g cm⁻³

g cm⁻³

g cm⁻³

Liigigy Oi	tire qualituili	vacuulli
		20

Quantum field theory:

Quantum gravity:

Supersymmetry:

Higgs potential:

Other sources:

Observed:
$$\rho \le 10^{-30}$$
 g cm⁻³

"To me every hour of the light and dark is a miracle. Every cubic inch of space is a miracle."

Walt Whitman

- cosmic radiation
- virtual particles
- Higgs potential
- dark matter
- dark energy

The Dark Side of the Universe

95% of the Universe Is Dark!

Dark energy (and Dark Matter)

Beware the Dark Side